Human ANG II(Angiotensin II) ELISA Kit

Catalogue No.: EH2627
Size: 48T/96T
Reactivity: Human
Range: 31.25-2000pg/ml
Sensitivity: 18.75pg/ml

Application: For quantitative detection of ANG II in serum, plasma, tissue homogenates and other biological fluids.

Storage: 2-8°C for 6 months
Expiry Date: see kit label
Principle: Competitive

NOTE: FOR RESEARCH USE ONLY.

Kit Components

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specifications(48T/96T)</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>ELISA Microplate(Dismountable)</td>
<td>8x6/8x12</td>
<td>2-8°C/-20°C</td>
</tr>
<tr>
<td>E002</td>
<td>Lyophilized Standard</td>
<td>1vial/2vial</td>
<td>2-8°C/-20°C</td>
</tr>
<tr>
<td>E039</td>
<td>Sample Dilution Buffer</td>
<td>10ml/20ml</td>
<td>2-8°C</td>
</tr>
<tr>
<td>E003</td>
<td>Biotin-labeled Antibody(Concentrated)</td>
<td>30ul/60ul</td>
<td>2-8°C(Avoid Direct Light)</td>
</tr>
<tr>
<td>E040</td>
<td>Antibody Dilution Buffer</td>
<td>5ml/10ml</td>
<td>2-8°C</td>
</tr>
<tr>
<td>E034</td>
<td>HRP-Streptavidin Conjugate(SABC)</td>
<td>60ul/120ul</td>
<td>2-8°C(Avoid Direct Light)</td>
</tr>
<tr>
<td>E049</td>
<td>SABC Dilution Buffer</td>
<td>5ml/10ml</td>
<td>2-8°C</td>
</tr>
<tr>
<td>E024</td>
<td>TMB Substrate</td>
<td>5ml/10ml</td>
<td>2-8°C(Avoid Direct Light)</td>
</tr>
<tr>
<td>E026</td>
<td>Stop Solution</td>
<td>5ml/10ml</td>
<td>2-8°C</td>
</tr>
<tr>
<td>E038</td>
<td>Wash Buffer(25X)</td>
<td>15ml/30ml</td>
<td>2-8°C</td>
</tr>
<tr>
<td>E006</td>
<td>Plate Sealer</td>
<td>3/5pieces</td>
<td></td>
</tr>
<tr>
<td>E007</td>
<td>Product Description</td>
<td>1copy</td>
<td></td>
</tr>
</tbody>
</table>
Typical Data & Standard Curve

Results of a typical standard operation of a ANG II ELISA Kit are listed below. This standard curve was generated at our lab for demonstration purpose only. Users shall obtain standard curve as per experiment by themselves. (N/A=not applicable)

<table>
<thead>
<tr>
<th>STD.(pg/ml)</th>
<th>OD-1</th>
<th>OD-2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.314</td>
<td>2.382</td>
<td>2.348</td>
</tr>
<tr>
<td>31.25</td>
<td>1.788</td>
<td>1.84</td>
<td>1.814</td>
</tr>
<tr>
<td>62.5</td>
<td>1.107</td>
<td>1.139</td>
<td>1.123</td>
</tr>
<tr>
<td>125</td>
<td>0.976</td>
<td>1.004</td>
<td>0.99</td>
</tr>
<tr>
<td>250</td>
<td>0.6</td>
<td>0.618</td>
<td>0.609</td>
</tr>
<tr>
<td>500</td>
<td>0.411</td>
<td>0.423</td>
<td>0.417</td>
</tr>
<tr>
<td>1000</td>
<td>0.248</td>
<td>0.256</td>
<td>0.252</td>
</tr>
<tr>
<td>2000</td>
<td>0.146</td>
<td>0.15</td>
<td>0.148</td>
</tr>
</tbody>
</table>
Specificity
This assay has high sensitivity and excellent specificity for detection of ANG II. No significant cross-reactivity or interference between ANG II and analogues was observed.
Note: Limited by current skills and knowledge, it is difficult for us to complete the cross-reactivity detection between ANG II and all the analogues, therefore, cross reaction may still exist.

Recovery
Matrices listed below were spiked with certain level of ANG II and the recovery rates were calculated by comparing the measured value to the expected amount of ANG II in samples.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Recovery Range (%)</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum(n=5)</td>
<td>85-104</td>
<td>95</td>
</tr>
<tr>
<td>EDTA Plasma(n=5)</td>
<td>88-102</td>
<td>94</td>
</tr>
<tr>
<td>Heparin Plasma(n=5)</td>
<td>85-101</td>
<td>92</td>
</tr>
</tbody>
</table>

Linearity
The linearity of the kit was assayed by testing samples spiked with appropriate concentration of ANG II and their serial dilutions. The results were demonstrated by percentage of calculated concentration to the expectation.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1:2 Recovery (%)</th>
<th>1:4 Recovery (%)</th>
<th>1:8 Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum(n=5)</td>
<td>85-101%</td>
<td>87-105%</td>
<td>90-104%</td>
</tr>
<tr>
<td>EDTA Plasma(n=5)</td>
<td>87-98%</td>
<td>83-98%</td>
<td>84-97%</td>
</tr>
<tr>
<td>Heparin Plasma(n=5)</td>
<td>80-91%</td>
<td>85-100%</td>
<td>80-100%</td>
</tr>
</tbody>
</table>

Precision
Intra-Assay: CV<8%
Inter-Assay: CV<10%

Stability
The stability of ELISA kit is determined by the loss rate of activity. The loss rate of this kit is less than 10% within the expiration date under appropriate storage condition.
<table>
<thead>
<tr>
<th>Standard(n=5)</th>
<th>37°C for 1 month</th>
<th>2-8°C for 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (%)</td>
<td>80</td>
<td>95-100</td>
</tr>
</tbody>
</table>

To minimize extra influence on performance, operation procedures and lab conditions, especially room temperature, air humidity, incubator temperature should be strictly controlled. It is strongly suggested that the same operator performs the whole assay from the beginning to the end.
Operation Procedure

Principle of the Assay

This kit was based on Competitive-ELISA detection method. The microtiter plate provided in this kit has been pre-coated with target. During the reaction, target in the sample or standard competes with a fixed amount of target on the solid phase supporter for sites on the Biotinylated Detection Antibody specific to target. Excess conjugate and unbound sample or standard are washed from the plate, and HRP-Streptavidin (SABC) is added to each microplate well and incubated. Then TMB substrate solution is added to each well. The enzyme-substrate reaction is terminated by the addition of a sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450nm. The concentration of target in the samples is then determined by comparing the OD of the samples to the standard curve.

Precautions

1. To inspect the validity of experiment operation and the appropriateness of sample dilution proportion, pilot experiment using standards and a small number of samples is recommended.
2. After opening and before using, keep plate dry.
3. Before using the kit, spin tubes and bring down all components to the bottom of tubes.
4. Storage TMB reagents avoid light.
5. Washing process is very important, not fully wash easily cause a false positive and high background.
6. Duplicate well assay is recommended for both standard and sample testing.
7. Don’t let microplate dry at the assay, for dry plate will inactivate active components on plate.
8. Don’t reuse tips and tubes to avoid cross contamination.
9. Avoid using the reagents from different batches together.

Material Required but Not Supplied

1. Microplate reader (wavelength:450nm)
2. 37°C incubator
3. Automated plate washer
4. Precision single and multi-channel pipette and disposable tips
5. Clean tubes and Eppendorf tubes
6. Deionized or distilled water

Washing

Manual: Discard the solution in the plate without touching the side walls. Clap the plate on absorbent filter papers or other absorbent material. Fill each well completely with 350ul wash buffer and soak for 1 to 2 minutes, then aspirate contents from the plate, and clap the plate on absorbent filter papers or other absorbent material.

Automatic: Aspirate all wells, and then wash plate with 350ul wash buffer. After the final wash, invert plate, and clap the plate on absorbent filter papers or other absorbent material. It is recommended that the washer shall be set for soaking 1 minute. (Note: set the height of the needles; be sure the fluid can be sipped up completely)
Sample Collection and Storage (universal)

- **Serum:** Place whole blood sample at room temperature for 2 hours or put it at 2-8°C overnight and centrifugation for 20 minutes at approximately 1000xg, Collect the supernatant and carry out the assay immediately. Blood collection tubes should be disposable, non-pyrogenic, and non-endotoxin.

- **Plasma:** Collect plasma using EDTA-Na2 or heparin as an anticoagulant. Centrifuge samples for 15 minutes at 1000xg at 2-8°C within 30 minutes of collection. Collect the supernatant and carry out the assay immediately. Avoid hemolysis, high cholesterol samples.

- **Tissue Homogenates:** As hemolysis blood has relation to assay result, it is necessary to remove residual blood by washing tissue with pre-cooling PBS buffer (0.01M, pH=7.4). Mince tissue after weighing it and get it homogenized in PBS (the volume depends on the weight of the tissue). Normal, 9ml PBS would be appropriate to 1 gram tissue pieces. Some protease inhibitors are recommended to add into the PBS) with a glass homogenizer on ice. To further break the cells, you can sonicate the suspension with an ultrasonic cell disrupter or subject it to freeze-thaw cycles. The homogenates are then centrifuged for 5 minutes at 5000xg to get the supernatant. The total protein concentration was determined by BCA kit and the total protein concentration of each pore sample should not exceed 0.3mg.

- **Cell Culture Supernatant:** Centrifuge supernatant for 20 minutes at 1000xg at 2-8°C to remove insoluble impurity and cell debris. Collect the clear supernatant and carry out the assay immediately.

- **Cell Culture Lysate:** Commercial RIPA kits are recommended to follow the instructions provided. Generally, 0.5ml RIPA lysis buffer would be appropriate to 2x10^6 cells, DNA must to be removed. The total protein concentration was determined by BCA kit and the total protein concentration of each pore sample should not exceed 0.3mg.

- **Other Biological Fluids:** Centrifuge samples for 20 minutes at 1000xg at 2-8°C. Collect supernatant and carry out the assay immediately.

Note: Samples to be used within 5 days can be stored at 2-8°C, besides that, samples must be stored at -20°C (assay ≤1 month) or -80°C (assays2 months) to avoid loss of bioactivity and contamination. Avoid multiple freeze-thaw cycles. The hemolytic samples are not suitable for this assay.

Sample Dilution

The user should estimate the concentration of target protein in the test sample, and select a proper dilution factor to make the diluted target protein concentration fall in the optimal detection range of the kit. Dilute the sample with the provided dilution buffer, and several trials may be necessary. The test sample must be well mixed with the dilution buffer. And also standard curves and sample should be making in pre-experiment. If samples with very high concentrations, dilute samples with PBS first and then dilute the samples with Sample Dilution.

Reagent Preparation and Storage

Bring all reagents and samples to room temperature for 20 minutes before use.

1. **Wash Buffer:**

If crystals have formed in the concentrate, you can warm it with 40°C water bath (Heating temperature should not exceed 50°C) and mix it gently until the crystals have completely been dissolved. The solution should be cooled to room temperature before use.

Dilute 30ml (15ml for 48T) Concentrated Wash Buffer into 750ml (375ml for 48T) Wash Buffer with deionized or distilled water. Put unused solution back at 2-8°C.

2. **Standards:**

1). Add 1 ml Sample Dilution Buffer into one Standard tube (labeled as zero tube), keep the tube at room temperature for 10 minutes and mix them thoroughly.
Note: If the standard tube concentration higher than the range of the kit, please dilute it and labeled as zero tube.

2). Label 7 EP tubes with 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 and blank respectively. Add 0.3ml of the Sample Dilution Buffer into each tube. Add 0.3ml of the above Standard solution (from zero tube) into 1st tube and mix them thoroughly. Transfer 0.3ml from 1st tube to 2nd tube and mix them thoroughly. Transfer 0.3ml from 2nd tube to 3rd tube and mix them thoroughly, and so on. Sample Dilution Buffer was used for the blank control.

Note: It is best to use Standard Solutions within 2 hours.

3. Preparation of Biotin-labeled Antibody Working Solution:
Prepare it within 1 hour before experiment.

1) Calculate required total volume of the working solution: 0.05ml/well × quantity of wells. (Allow 0.1-0.2ml more than the total volume.)

2) Dilute the Biotin-detection antibody with Antibody Dilution Buffer at 1:100 and mix them thoroughly. (i.e. Add 1ul Biotin-labeled antibody into 99ul Antibody Dilution Buffer.)

4. Preparation of HRP-Streptavidin Conjugate (SABC) Working Solution:
Prepare it within 30 minutes before experiment.

1) Calculate required total volume of the working solution: 0.1ml/well × quantity of wells. (Allow 0.1-0.2ml more than the total volume.)

2) Dilute the SABC with SABC Dilution Buffer at 1:100 and mix them thoroughly. (i.e. Add 1ul of SABC into 99ul of SABC Dilution Buffer.)

Assay Procedure
When diluting samples and reagents, they must be mixed completely and evenly. Before adding TMB into wells, equilibrate TMB Substrate for 30 minutes at 37°C. It is recommended to plot a standard curve for each test.

1. Set standard, test samples, control (blank) wells on the pre-coated plate respectively, and then, records their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (blank) wells!

2. Add Sample and Biotin-labeled Antibody: Add 50ul of Standard, Blank, or Sample per well. The blank well is added with Sample/Standard Dilution Buffer. Immediately add 50ul Biotin-labeled Antibody Working Solution into each well. Cover with the Plate sealer we provided. Gently tap the plate to ensure thorough mixing. Incubate for 45 minutes at 37°C. (Solutions are added to the bottom of microplate well, avoiding inside wall touching and foaming as much as you can.)
3. **Wash:** Remove the cover, and wash plate 3 times with Wash Buffer, and let the wash buffer stay in the wells for 1 minute each time. After the last wash, remove any remaining Wash Buffer by aspirating or decanting.

4. **HRP-Streptavidin Conjugate (SABC):** Add 100ul SABC Working Solution into each well. Cover it with a new Plate sealer. Incubate for 30 minutes at 37°C.

5. **Wash:** Remove the cover and wash plate 5 times with Wash Buffer, and let the wash buffer stay in the wells for 1-2 minutes each time.

6. **TMB Substrate:** Add 90ul TMB Substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 minutes. **(Note:** The reaction time can be shortened or extended according to the actual color change, but not more than 30 minutes. You can terminate the reaction when apparent gradient appeared in standard wells.)

7. **Stop:** Add 50ul Stop Solution into each well. The color will turn yellow immediately. The adding order of Stop Solution should be as the same as the TMB Substrate Solution.

8. **OD Measurement:** Read the O.D. absorbance at 450nm in Microplate Reader immediately after adding the stop solution.

Regarding calculation, the standard curve can be plotted as the O.D.450 of each standard solution (Y) vs., the respective concentration of the standard solution (X). The target concentration of the samples can be interpolated from the standard curve. It is recommended to use some professional software to do this calculation, such as **Curve Expert 1.3 or 1.4.**

Note: If the samples measured were diluted, multiply the dilution factor to the concentrations from interpolation to obtain the concentration before dilution.

Summary

Step1: Wash plate 2 times before adding Standard, Sample and Control (blank) wells!

Step2: Add 50ul Standard or Sample into each well. Immediately add 50ul Biotin-labeled Antibody into each well, gently tap the plate to ensure thorough mixing then incubate for 45 minutes at 37°C.

Wash step: Aspirate and wash plates 3 times.

Step3: Add 100ul SABC Working Solution into each well and incubate for 30 minutes at 37°C.

Wash step: Aspirate and wash plates 5 times.

Step4: Add 90ul TMB Substrate Solution. Incubate 10-20 minutes at 37°C.

Step5: Add 50ul Stop Solution. Read at 450nm immediately and calculation.