FineTest ${ }^{\circledR}$

Human TCF3(Transcription factor E2-alpha) ELISA Kit

Catalogue No.: EH1691
Revision: V4.0
Size: 48T/96T

Please do not mix and use reagents from different kits or different batches. Otherwise, it might not work properly.

Please read the manual carefully before use. Feel free to contact us if you have any questions.

Email fine@fn-test.com
Website https://www.fn-test.com/

Please provide the batch number (see kit label) for more rapid response and services. It's strongly recommended to use this kit within the expiry date printed on the kit label.

Technical support related documents

Title of Document	Sample preparation guide	Experimental operation procedure	TMB color rendering control	Standard curve and concentration calculation software CurveExpert1.4(Including tutorial)
Website	https://www.fntest.com/content/uploa ds/2022/06/ELISA-Sample-Preparation-Protocol-2022.6.6.pdf	https://www.fn-test.com/videos/elisatest/	https://www.fntest.com/videos/targete d-control-of-tmbcoloring/	https://www.fntest.com/content/uploads/ 2019/08/CurveExpert1.4.zip
Quick Mark				

Product Features

Application	In vitro quantitative determination of TCF3 concentrations in serum, plasma, cell culture supernatant and other biological samples.		
	Human	Detection Method	Sandwich
Range	$0.313-20 \mathrm{ng} / \mathrm{ml}$	Sensitivity	$0.188 \mathrm{ng} / \mathrm{ml}$
Detection Duration	4 hours(excluding balancing and sample preparation)		
Samples needed for single well(Max)	Serum: 50 ul, Plasma: 50 ul, Cell Culture Supernatant: 100 ul, cell or tissue lysate: $100 u l, ~ O t h e r ~ l i q u i d ~ s a m p l e s: ~$		
Specificity	Specifically recognize TCF3, no obvious cross reaction with other analogues		
Storage	$2-8^{\circ} \mathrm{C}$ (for sealed box), please do not freeze! See kit label for expiry date		

Principle of the Assay

This kit was based on sandwich enzyme-linked immune-sorbent assay technology. Anti TCF3 antibody was pre-coated onto the 96 -well plate. The biotin conjugated anti TCF3 antibody was used as the detection antibody. The standards and pilot samples were added to the wells subsequently. After incubation, unbound conjugates were removed by wash buffer. Then, biotinylated detection antibody was added to bind with TCF3 conjugated on coated antibody. After washing off unbound conjugates, HRP-Streptavidin was added. After a third washing, TMB substrates were added to visualize HRP enzymatic reaction. TMB was catalyzed by HRP to produce a blue color product that turned yellow after adding a stop solution. Read the O.D. absorbance at 450 nm in a microplate reader. The concentration of TCF3 in the sample was calculated by drawing a standard curve. The concentration of the target substance is proportional to the OD450 value.

Kit Components and Storage

The sealed kit can be stored at $2-8^{\circ} \mathrm{C}$. The storage condition for opened kit is specified in the table below:

No.	Item	Size(48T)	Size(96T)	Storage Condition for Opened Kit
E001	ELISA Microplate(Dismountable)	8×6	8×12	Put the rest strips into a sealed foil bag with the desiccant. Stored for 1 month at $2-8^{\circ} \mathrm{C}$; Stored for 6 month at $-20^{\circ} \mathrm{C}$
E002	Lyophilized Standard	1vial	2vial	Put the rest standards into a desiccant bag. Stored for 1 month at $2-8^{\circ} \mathrm{C}$; Stored for 6 month at $-20^{\circ} \mathrm{C}$
E003	Biotin-labeled Antibody(Concentrated, 100X)	60ul	120ul	
E034	HRP-Streptavidin Conjugate(SABC, 100X)	60ul	120ul	$2-8{ }^{\circ} \mathrm{C}$ (Avoid Direct Light)
E024	TMB Substrate	5 ml	10 ml	
E039	Sample Dilution Buffer	10 ml	20 ml	
E040	Antibody Dilution Buffer	5 ml	10 ml	
E049	SABC Dilution Buffer	5 ml	10 ml	$2-8^{\circ} \mathrm{C}$
E026	Stop Solution	5 ml	10 ml	
E038	Wash Buffer(25X)	15 ml	30 ml	
E006	Plate Sealer	3 pieces	5 pieces	
E007	Product Description	1 copy	1 copy	

Note: The liquid reagent bottle contains slightly more reagent than indicated on the label. Please use pipette accurately measure and do proportional dilution.

Required Instruments and Reagents

1. Microplate reader (wavelength: 450 nm)
2. $37^{\circ} \mathrm{C}$ incubator (CO_{2} incubator for cell culture is not recommenced.)
3. Automated plate washer or multi-channel pipette $/ 5 \mathrm{ml}$ pipettor (for manual washing purpose)
4. Precision single ($0.5-10 \mu \mathrm{~L}, 5-50 \mu \mathrm{~L}, 20-200 \mu \mathrm{~L}, 200-1000 \mu \mathrm{~L}$) and multi-channel pipette with disposable tips(calibration is required before use.)
5. Sterile tubes and Eppendorf tubes with disposable tips
6. Absorbent paper and loading slot
7. Deionized or distilled water

Sample Collection and Storage

The following sample processing steps are concise operations. For detailed sample preparation guideline, please refer to the Quick Mark or the link (https://www.fn-test.com/content/uploads/2022/06/ELISA-Sample-Preparation-Protocol-2022.6.6.pdf).

1. Serum

Place whole blood sample at room temperature for 2 hours or at $2-8^{\circ} \mathrm{C}$ overnight. Centrifuge for 20 min at 1000 xg and collect the supernatant to detect immediately. Or you can aliquot the supernatant and store it at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ for future's assay.

2. Plasma

EDTA- $\mathrm{Na}_{2} / \mathrm{K}_{2}$ is recommended as the anticoagulant. Centrifuge samples for 15 minutes at $1000 \times \mathrm{g} 2-8^{\circ} \mathrm{C}$ within 30 minutes after collection. Collect the supernatant to detect immediately. Or you can aliquot the supernatant and store it at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ for future's assay. For other anticoagulant types and uses, please refer to the sample preparation guideline.

3. Tissue Sample

Generally tissue samples are required to be made into homogenization. Protocol is as below:
3.1. Place the target tissue on the ice. Remove residual blood by washing tissue with pre-cooling PBS buffer ($0.01 \mathrm{M}, \mathrm{pH}=7.4$). Then weigh for usage.
3.2. Use lysate to grind tissue homogenates on the ice. The adding volume of lysate depends on the weight of the tissue. Usually, 9 mL PBS would be appropriate to 1 gram tissue pieces. Some protease inhibitors are recommended to add into the PBS (e.g. 1 mM PMSF).
3.3. Do further process using ultrasonic disruption or freeze-thaw cycles (Ice bath for cooling is required during ultrasonic disruption; Freeze-thaw cycles can be repeated twice.) to get the homogenates.
3.4. Homogenates are then centrifuged for 5 minutes at $5000 \times g$. Collect the supernatant to detect immediately. Or you can aliquot the supernatant and store it at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ for future's assay.
3.5. Determine total protein concentration by BCA kit for further data analysis. Usually, total protein concentration for Elisa assay should be within $1-3 \mathrm{mg} / \mathrm{ml}$. Some tissue samples such as liver, kidney, pancreas which containing a higher endogenous peroxidase concentration may react with TMB substrate causing false positivity. In that case, try to use $1 \% \mathrm{H}_{2} \mathrm{O}_{2}$ for 15 min inactivation and perform the assay again.

Notes: PBS buffer or the mild RIPA lysis can be used as lysates. While using RIPA lysis, make the PH=7.3. Avoid using any reagents containing NP-40 lysis buffer, Triton X-100 surfactant, or DTT due to their severe inhibition for kits' working. We recommend using 50 mM Tris+0.9\%NaCL+0.1\%SDS, PH7.3. You can prepare by yourself or contact us for purchasing.

4. Cell Culture Supernatant

Collect the supernatant: Centrifuge at 2500 rpm at $2-8^{\circ} \mathrm{C}$ for 5 minutes, then collect clarified cell culture supernatant to detect immediately. Or you can aliquot the supernatant and store it at $-80^{\circ} \mathrm{C}$ for future's assay.

5. Cell Lysate

5.1. Suspension Cell Lysate: Centrifuge at 2500 rpm at $2-8^{\circ} \mathrm{C}$ for 5 minutes and collect cells. Then add precooling PBS into collected cell and mix gently. Recollect cell by repeating centrifugation. Add $0.5-1 \mathrm{ml}$ cell lysate and appropriate protease inhibitor (e.g. PMSF, working concentration: $1 \mathrm{mmol} / \mathrm{L}$). Lyse the cell on ice for 30min-1h or disrupt the cell by ultrasonic disruption.
5.2. Adherent Cell Lysate: Absorb supernatant and add pre-cooling PBS to wash three times. Add 0.5-1ml cell lysate and appropriate protease inhibitor (e.g. PMSF, working concentration: $1 \mathrm{mmol} / \mathrm{L}$). Scrape the adherent cell with cell scraper. Lyse the cell suspension added in the centrifuge tube on ice for $30 \mathrm{~min}-1 \mathrm{~h}$ or disrupt the cell by ultrasonic disruption.
5.3. During lysate process, use the tip for pipetting or intermittently shake the centrifugal tube to completely lyse the protein. Mucilaginous product is DNA which can be disrupted by ultrasonic cell disruptor on ice. ($3^{\sim} 5 \mathrm{~mm}$ probe, $150-300 \mathrm{~W}, 3^{\sim 5} \mathrm{~s} /$ time, 30 s intervals for $1^{\sim} 2 \mathrm{~s}$ working).
5.4. At the end of lysate or ultrasonic disruption, centrifuge at 10000 rpm at $2-8^{\circ} \mathrm{C}$ for 10 minutes. Then, the supernatant is added into EP tube to detect immediately. Or you can aliquot the supernatant and store it at $80^{\circ} \mathrm{C}$ for future's assay.

Notes: Read notes in tissue sample.

6. Other Biological Sample

Centrifuge samples for 15 minutes at $1000 \times g$ at $2-8^{\circ} \mathrm{C}$. Collect the supernatant to detect immediately. Or you can aliquot the supernatant and store it at $-80^{\circ} \mathrm{C}$ for future's assay.

Recommended reagents for sample preparation: Cat No: E051 100mM PMSF protease inhibitor, Cat No: E050 FineTest Lysis Buffer (for ELISA).

Notes for Samples

1. Blood collection tubes should be disposable and non-endotoxin. Avoid to use hemolyzed and lipemia samples.
2. The best sample storage condition: less than 5 days at $2-8^{\circ} \mathrm{C}$; within 6 months at $-20^{\circ} \mathrm{C}$; within 2 years at $-80^{\circ} \mathrm{C}$. Stored in liquid nitrogen for a longer storage. When melting frozen samples, rapid water bath at $15-25^{\circ} \mathrm{C}$ can decrease the effect of ice crystal $\left(0^{\circ} \mathrm{C}\right)$ on the sample. After melting, centrifuge to remove the precipitate, and then mix well.
3. The detection range of this kit is not equivalent to the concentration of analyze in the sample. For analyses with higher or lower concentration, please properly dilute or concentrate the sample.
4. Pretest is recommended for special samples without reference data to validate the validity.
5. Recombinant protein may not match with the capture or detection antibody in the kit, resulting in the undetectable assay.

Precautions for Kits

1. When using different Elisa kits, labeling is required to avoid mixed components and failed assay.
2. After opening the kit, please refer to the table of storage condition for coated plate and standards (Dampness may decrease the activity.). If any component is missing or damaged during the assay or storage, please contact us for ordering a new one to replace.(e.g. E002 lyophilized standard)
3. Sterile and disposable tips are required during the assay. After use, the reagents bottle cap has to be tightened to avoid the microbial contamination and evaporation.
4. While manual washing, please keep tips or pipettors for adding wash buffer away from the well. Insufficient washing or contamination easily causes false positive and high background.
5. During the assay, prepare required reagents for next step in advance. After washing, add the reagent into the well in time to avoid dryness. Otherwise, dry plate will result in the failed assay.
6. Before confirmation, reagents from other batches or sources should not be used in this kit.
7. Don't reuse tips and tubes to avoid cross contamination.
8. After loading, seal the plate to avoid the evaporation of the sample during incubation. Complete the incubation process at recommended temperature.
9. Please wear the lab coat, mask and gloves to protect yourself during the assay. Especially, for the detection of blood or other body fluid samples, please follow regulations on safety protection of biological laboratory.

Recommended Sample Dilution Ratio

Please refer to shipped instructions or contact us for samples, dilution as well background info.

The matrix components in serum/plasma will affect the test results, which it need to be diluted at least 1/2 with Sample Dilution Buffer before testing!

If other dilution ratio for your sample model is required, please refer to the universal dilution ratio below. (The ratio is suitable for single-well assay. For duplicate assay, please follow the calculation: volume of sample and diluent x number of duplicate well)

For 2 fold dilution (1/2): One step dilution. Add 60ul sample into 60ul sample diluent and mix gently. For 5 fold dilution (1/5): One step dilution. Add 24 ul sample into 96 ul sample diluent and mix gently. For 10 fold dilution (1/10): One step dilution. Add 12ul sample into 108 ul sample diluent and mix gently. For 20 fold dilution (1/20): One step dilution. Add 6 ul sample into 114 ul sample diluent and mix gently. For 50 fold dilution (1/50): One step dilution. Add 3 ul sample and 47 ul normal saline $(0.9 \% \mathrm{NaCl})$ into 100 ul sample diluent and mix gently.

For 100 fold dilution (1/100): One step dilution. Add 3 ul sample and 177 ul normal saline into 120 ul sample diluent and mix gently.

For 1000 fold dilution (1/1000): Two step dilution. Create a 50 -fold dilution first (normal saline is used throughout the dilution). Then, create a 20 -fold dilution and mix gently.

For 10000 fold dilution (1/10000): Two step dilution. Create a 100-fold dilution first (normal saline is used throughout the dilution). Then, create the same dilution again and mix gently.

For 100000 fold dilution (1/100000): Three step dilution. Create a 50 -fold dilution and 20 -fold dilution respectively (normal saline is used in the first two steps.) Finally, create a 100 -fold dilution and mix gently.

Notes: The volume in each dilution is not less than 3 ul. Dilution factor should be within $\mathbf{1 0 0}$ fold. Mixing during dilution is required to avoid foaming.

Reagent Preparation and Storage

Take the Elisa kit from the fridge around 20 minutes earlier and equilibrate to room temperature $\left(18-25^{\circ} \mathrm{C}\right)$. For repeated assays, please just take the strips and standards required for the current assay, store the rest materials according to the relevant condition.

1. Wash Buffer

Dilute 30 ml (15 ml for 48 T) concentrated wash buffer to 750 ml (375 ml for 48 T) wash buffer with deionized or distilled water and mix well. (The recommended resistivity of ultrapure water is $18 \mathrm{M} \Omega$.) Alternatively, take appropriate amount of concentrated wash buffer according to the assay requirement, then create a 25 -fold dilution and mix well. Store the rest solution at $2-8^{\circ} \mathrm{C}$.

Crystals formed in the concentrated wash buffer can be heated by water bath at $40^{\circ} \mathrm{C}$ till complete dissolution. (Heating temperature should be below $50^{\circ} \mathrm{C}$.) Mix well for the next step. It's better to use up the prepared wash buffer in one day. Store the rest buffer at $2-8^{\circ} \mathrm{C}$ within 48 h .

2. Standards

2.1. Centrifuge standards tube for 1 min at 10000 xg . Label it as Zero tube.
2.2. Add 1 ml sample dilution buffer into the standard tube. Tighten the tube cap and Let it stand for 2 min at room temperature. Invert the tube several times to mix gently. (Or you can mix it using a low speed vortex mixer for 3-5 seconds.)
2.3. Centrifuge the tubes for 1 min at 1000 xg , making the liquid towards the bottom of tube and removing possible bubbles.
2.4. Standard dilution: Label 7 EP tubes with $1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64$ and blank respectively. Add 0.3 ml of the sample dilution buffer into each tube. Add 0.3 ml solution from zero tube into $1 / 2$ tube and mix them thoroughly. Transfer 0.3 ml from $1 / 2$ tube into $1 / 4$ tube and mix them thoroughly. Transfer 0.3 ml from $1 / 4$ tube into $1 / 8$ tube and mix them thoroughly, so on till $1 / 64$ tube. Now blank tube only contain 0.3 ml sample dilution buffer. The standard concentration from zero tube to blank tube is $20 \mathrm{ng} / \mathrm{ml}, 10 \mathrm{ng} / \mathrm{ml}$, $5 \mathrm{ng} / \mathrm{ml}, 2.5 \mathrm{ng} / \mathrm{ml}, 1.25 \mathrm{ng} / \mathrm{ml}, 0.625 \mathrm{ng} / \mathrm{ml}, 0.312 \mathrm{ng} / \mathrm{ml}, 0 \mathrm{ng} / \mathrm{ml}$.

Notes: Store the zero tube with dissolved standards at $2-8^{\circ} \mathrm{C}$ and use it within 12 h . Other diluted working solutions containing standards should be used in 2 h .

3. Preparation of Biotin-labeled Antibody Working Solution

The working solution should be prepared within 30 min before the assay and can't be stored for a long time.
3.1. Calculate required total volume of the working solution: 100ul/well x quantity of wells. (It's better to prepare additional 100ul-200ul.)
3.2. Centrifuge for 1 min at 1000xg in low speed and bring down the concentrated biotin-labeled antibody to the bottom of tube.
3.3. Dilute the biotinylated detection antibody with antibody dilution buffer at 1:99 and mix them thoroughly. (e.g. Add 10ul concentrated biotin-labeled antibody into 990 ul antibody dilution buffer.)

4. Preparation of HRP-Streptavidin Conjugate (SABC) Working Solution

The working solution should be prepared within 30 min before the assay and can't be stored for a long time.
4.1. Calculate required total volume of the working solution: $100 \mathrm{ul} /$ well x quantity of wells. (It's better to prepare additional 100ul-200ul.)
4.2. Centrifuge for 1 min at 1000 xg in low speed and bring down the concentrated SABC to the bottom of tube.
4.3. Dilute the concentrated SABC with SABC dilution buffer at 1:99 and mix them thoroughly. (e.g. Add 10ul concentrated SABC into 990ul SABC dilution buffer.)

Assay Procedure Summary

Step 1: Add 100ul standard or sample into each well, seal the plate and static incubate for 90 minutes at $37^{\circ} \mathrm{C}$.

Washing: Wash the plate twice without immersion.
Step 2: Add 100ul biotin-labeled antibody working solution into each well, seal the plate and static incubate for 60 minutes at $37^{\circ} \mathrm{C}$.

Washing: Wash the plate three times and immerse for 1 min each time.
Step 3: Add 100ul SABC working solution into each well, seal the plate and static incubate for 30 minutes at $37^{\circ} \mathrm{C}$.

Washing: Wash the plate five times and immerse for 1 min each time.
Step 4: Add 90ul TMB substrate solution, seal the plate and static incubate for $10-20$ minutes at $37^{\circ} \mathrm{C}$. (Accurate TMB visualization control is required.)

Step 5: Add 50ul stop solution. Read at 450nm immediately and calculate.

FineTest ${ }^{\circledR}$

Detailed Assay Procedure

When diluting samples and reagents, they must be mixed completely. It's recommended to plot a standard curve for each test.

1. Set standard, pilot samples, control (blank) wells on the pre-coated plate respectively, and then, records their positions. It's recommended to measure each standard and sample in duplicate to decrease experimental errors.
2. Standards and samples loading: Aliquot 100 ul of zero tube, $1^{\text {st }}$ tube, $2^{\text {nd }}$ tube, $3^{\text {rd }}$ tube, $4^{\text {th }}$ tube into each standard well. Also add 100 ul sample dilution buffer into the control (blank) well. Then, add 100 ul pilot samples into each sample well. Seal the plate and static incubate for 90 minutes at $37^{\circ} \mathrm{C}$. (Add the solution to the bottom of each well. Mix gently and without touch the sidewall and foam the sample.)
3. Wash twice: Remove the cover, then absorb the liquid in the plate or tap the plate on a clean absorbent paper two or three times. Add 350 ul wash buffer into each well without immersion. Discard the liquid in the well and tap on the absorbent paper again. Repeat the washing step twice.
4. Biotin-labeled Antibody: Add 100ul biotin-labeled antibody working solution into each well. Seal the plate and static incubate for 60 minutes at $37^{\circ} \mathrm{C}$.
5. Wash three times: Remove the cover, then absorb the liquid in the plate or tap the plate on a clean absorbent paper two or three times. Add 350 ul wash buffer into each well and immerse for 1 min . Discard the liquid in the well and tap on the absorbent paper again. Repeat the washing step three times.
6. HRP-Streptavidin Conjugate (SABC): Add 100 ul SABC working solution into each well. Seal the plate and static incubate for 30 minutes at $37^{\circ} \mathrm{C}$. (Put the whole bottle of TMB into the $37^{\circ} \mathrm{C}$ incubator to equilibrate for 30 min .)
7. Wash five times: Remove the cover, and then wash the plate with wash buffer five times. Read washing method in step 5.
8. TMB Substrate: Add 90ul TMB Substrate into each well, seal the plate and static incubate at $37^{\circ} \mathrm{C}$ in dark within 10-20 minutes. Run the microplate reader and preheat for 15 min .
(Notes: Please do not use the reagent reservoirs used by HRP couplings. The reaction time can be shortened or extended according to the actual color change, but not more than 30 minutes. You can terminate the reaction when apparent gradient appeared in standard wells. Weaker or stronger color intensity is unacceptable. Please refer to TMB color rendering control in page 2 or QR code for detail.)
9. Stop: Keep the liquid in the well after staining. Add 50 ul stop solution into each well. The color will turn yellow immediately. The order for adding stop solution and TMB substrate solution is the same.
10. OD Measurement: Read the O.D. absorbance at 450 nm in a microplate reader immediately and calculate.

Calculation of Results

(Operate Video: https://www.fn-test.com/videos/elisa-sample-concentration-calculation/)

1. Calculate the mean OD450 value of the duplicate readings for each standard, control, and sample. Then, obtain the corrected OD450 by subtracting the OD450 blank.
2. Create a four parameter logistic curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis. (Remove the OD450 blank during plotting.) Alternatively, you can use the curve fitting software offered by the microplate reader (e.g. Thermo Skanlt RE software, Curve Expert 1.3 or 1.4 available in FineTest website).
3. Calculate the sample concentration by substituting OD450 value into the standard curve. Diluted samples should be multiplied by the relevant dilution ratio.

Typical Data \& Standard Curve

This product has been tested by Quality Control Department and meets performance specifications mentioned in the manual. (The humidity in the laboratory is $20 \%-60 \%$, and the temperature is $18^{\circ} \mathrm{C}-$ $25^{\circ} \mathrm{C}$. TMB was balanced to $37^{\circ} \mathrm{C}$ before color development, and incubated at $37^{\circ} \mathrm{C}$ for 15 minutes in the dark after adding the enzyme label plate holes.)

The following assay data are provided for reference, since experimental environment and operation are different. The establishment of standard curve depends on your own assay.

STD.(ng/mI)	OD-1	OD-2	Average	Corrected
0	0.05	0.052	0.051	0
0.312	0.123	0.127	0.125	0.074
0.625	0.241	0.247	0.244	0.193
1.25	0.41	0.422	0.416	0.365
2.5	0.947	0.645	0.636	0.585
5	1.712	1.762	0.975	1.737
10	2.452	2.524	2.488	0.91
20				2.686

Precision

Intra-assay Precision: samples with low, medium and high concentration are tested 20 times on same plate. Inter-assay Precision: samples with low, medium and high concentration are tested 20 times on three different plates.

Item	Intra-assay Precision			Inter-assay Precision		
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
Mean (ng/ml)	0.59	2.57	9.97	0.62	2.57	10.16
Standard deviation	0.03	0.13	0.47	0.03	0.13	0.59
$\mathrm{CV}(\%)$	5.82	5.12	4.69	5.22	4.89	5.82

Recovery

Add a certain amount of TCF3 into the sample. Calculate the recovery by comparing the measured value with the expected amount of TCF3 in the sample.

Matrix	Recovery Range (\%)	Average (\%)
Serum($\mathrm{n}=5$)	$94-97$	95
EDTA Plasma($\mathrm{n}=5$)	$91-99$	96
Heparin Plasma($\mathrm{n}=5$)	$88-98$	93

Linearity

Dilute the sample with a certain amount of TCF3 at 1:2, 1:4 and 1:8 to get the recovery range.

Sample	$1: 2$	$1: 4$	$1: 8$
Serum($n=5$)	$86-102 \%$	$85-103 \%$	$87-102 \%$
EDTA Plasma(n=5)	$86-98 \%$	$83-98 \%$	$86-101 \%$
Heparin Plasma(n=5)	$82-96 \%$	$82-94 \%$	$81-95 \%$

Stability

Perform the stability test for the sealed kit at $37^{\circ} \mathrm{C}$ and $2-8^{\circ} \mathrm{C}$ and get relevant data.

Elisa kit(n=5)	$37^{\circ} \mathrm{C}$ for 1 month	$2-8^{\circ} \mathrm{C}$ for 6 months
Average (\%)	80	$95-100$

ELISA Troubleshooting

If the ELISA result is unsatisfied, please take a screenshot for the staining result and store the OD data. Keep used strips as well the rest reagents. Contact us to solve your problem with the kit's catalogue number and batch number. You can also refer to the following table to check the reason.

Problem	Possible Causes	Solutions
Standard curve without signal	Incorrect order for adding reagents	Confirm the required reagent added in each step. Also repeat the assay and verify.
	Use components from different kits	Use the component included in the same kit. Also repeat the assay and verify.
	Forget to add some reagents	Verify whether the required reagent is added.
Overflow OD	Use components from different kits, or prepare the working solution with higher concentration	Use the component included in the same kit. Also repeat the assay and verify.
Poor standard curve	Inappropriate curve fitting model	Try to plot the curve by different fitting models.
Samples without signal	The amount of pilot sample is lower than the detection range.	Decrease dilution ratio or concentrate the sample.
	The detection target is incompatible with the buffer.	Verify the compatibility of sample storage buffer with the pilot sample.
	Incorrect preparation of sample	Please refer to sample preparation guideline and regularly store.
	Longer storage of sample or freezethaw cycle	Aliquot and store samples according to the assay requirement.
High CV\%	Precipitate is formed in the well during staining.	Increase the dilution ratio of the sample.
	Unclean plate	Don't touch the bottom of the plate during the assay.
	Foam is found in the well.	Avoid foaming during reading in a microplate reader.
	Each well is washed unevenly.	Check whether the tube of the washer is smooth.
	Reagents are not completely mixed.	Mix all reagents completely.
	Inconsistent pipetting	Use calibrated pipette and correct pipetting method.
Standard curve with low signal	Standards are improperly reconstituted.	Before opening, shortly centrifuge the lyophilized standard tube till complete dissolution.
	Standards have been degraded.	Follow suggested storage conditions for

Declaration

1. Limited to current conditions and scientific techniques, all raw materials are not completely identified and analyzed. This product may have a technology-related quality risk.
2. During the Elisa kit development, some endogenous interferons(not all) in the biological sample have been removed or decreased.
3. The final assay result is related to the validity of reagents, experimental operation and environment. FineTest is only responsible for this kit, excluding sample consumption during using this kit. Before use, please consider and prepare enough samples required by the assay.
4. To get a satisfied assay result, please use all reagents offered by this kit. Don't use any product from other vendors. Strictly follow instructions of this manual.
5. During assay procedure, incorrect reagents preparation and parameter setting of the microplate reader may result in the abnormal result. Before assay, please read this manual carefully and adjust instruments.
6. Even if the assay is performed by the same person, results in two independent assays may be different. Thus, each step in the assay should be controlled to ensure the reproducibility.
7. Before delivery, this kit is subject to the strict QC. Influenced by transportation conditions and experimental devices, the assay result got by the customer may be different from original data. Inter-assay CV between different batches may be caused by reasons before.
8. This kit is not compared to similar kits from other vendors or methods for testing the same detection target. Thus, assay results may be inconsistent.
9. This kit allows for research use only. For IVD or other purposes, FineTest is not responsible for relevant consequences and doesn't bear any legal liability.
